

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 177 (2004) 709-713

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Syntheses, structure, and magnetic properties of several $LnYbQ_3$ chalcogenides, Q = S, Se

Kwasi Mitchell, Rebecca C. Somers, Fu Qiang Huang, and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA Received 3 June 2003; received in revised form 14 August 2003; accepted 11 September 2003

Abstract

The six $LnYbQ_3$ compounds β -LaYbS₃, LaYbSe₃, CeYbSe₃, PrYbSe₃, NdYbSe₃, and SmYbSe₃ have been synthesized from hightemperature solid-state reactions of the constituent elements at 1223 K. The compounds are isostructural to UFeS₃ and crystallize in the space group *Cmcm* of the orthorhombic system with four formula units in a cell. Cell constants (Å) at 153 K are: β -LaYbS₃, 3.9238(8), 12.632(3), 9.514(2); LaYbSe₃, 4.0616(8), 13.094(3), 9.932(2); CeYbSe₃, 4.0234(5), 13.065(2), 9.885(1); PrYbSe₃, 4.0152(5), 13.053(2), 9.868(1); NdYbSe₃, 4.0015(6), 13.047(2), 9.859(1); SmYbSe₃, 3.9780(9), 13.040(3), 9.860(2). The structure is composed of layers of YbQ₆ (Q=S or Se) octahedra that alternate with layers of LnQ_8 bicapped trigonal prisms along the *b*-axis. Because there are no Q-Q bonds in the structure the formal oxidation states of Ln/Yb/Q are 3 + /3 + /2 -. Magnetic susceptibility measurements indicate that CeYbSe₃ and SmYbSe₃ are Curie–Weiss paramagnets over the temperature range 5–300 K. © 2003 Elsevier Inc. All rights reserved.

Keywords: Synthesis; Crystal structure; Solid-state compound; Rare-earth element; Chalcogenide; Magnetic properties

1. Introduction

The $LnLn'O_3$ oxides, where Ln = La-Nd and Ln' = Ho–Lu, Y, have been the focus of numerous investigations of their structures and properties [1–12]. Typically, these oxides adopt the orthorhombic $GdFeO_3$ structure type [13], which is a distorted variant of the cubic ABO₃ perovskite structure. Compared with perovskite, in this variant the coordination number of the A site is reduced from 12 to 8 and the coordination of the B site is reduced from 8 to 6. Magnetic measurements indicate that LaErO₃ exhibits an antiferromagnetic transition at 2.4K [1,12], whereas the $LnYbO_3$ (Ln = La - Pr) compounds order antiferromagnetically with a weak ferromagnetism at 2.7 K [12]. The magnetic properties of these perovskites are independent of the A site ions (La-Pr) but are dependent on the B site ions (Er and Yb).

In contrast to the oxides, the $LnLn'S_3$ chalcogenides have received little attention and no corresponding selenides $LnLn'Se_3$ or tellurides $LnLn'Te_3$ have been reported. Single-crystal X-ray diffraction studies were conducted on YScS₃ [14], CeScS₃ [15,16], CeTmS₃ [17], NdYbS₃ [18], and LaYbS₃ [19], but no physical properties were measured. YScS₃ and CeScS₃ are isostructural and as the *LnLn*'O₃ oxides adopt the GdFeO₃ structure type. CeTmS₃ crystallizes in a rather complex threedimensional structure. LaYbS₃ crystallizes in two different structure types: α -LaYbS₃ (*Pnma*), synthesized at 1520 K, adopts a three-dimensional structure; β -LaYbS₃ (*B*22₁2; standard setting *C*222₁), synthesized at 1270 K, adopts a layered structure.

This investigation details the syntheses, structure, and magnetic properties of several $LnYbSe_3$ compounds. It also provides a redetermination of the structure of β -LaYbS₃, which crystallizes in a different space group from that reported earlier.

2. Experimental

2.1. Syntheses

The following reagents were used as obtained: La (Cerac, 99.9%), Ce (Alfa Aesar, 99.9%), Pr (Strem, 99.9%), Nd (Cerac, 99.9%), Sm (Alfa Aesar, 99.9%), Yb (Strem, 99.9%), S (Alfa Aesar, 99.99%), Se (Cerac,

^{*}Corresponding author. Fax: +1-847-491-2976.

E-mail address: ibers@chem.northwestern.edu (J.A. Ibers).

^{0022-4596/\$ -} see front matter \odot 2003 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2003.08.024

99.99%), and KI (Aldrich, 99.99%). Reaction mixtures consisted of 0.5 mmol Ln, 0.5 mmol Yb, and 1.5 mmol S or Se and 300 mg of KI. The reactants were loaded into carbon-coated fused-silica tubes in an Ar filled glovebox. These tubes were sealed under a 10^{-4} Torr atmosphere and then placed in a computer-controlled furnace. The samples were heated to 1223 K in 24 h, kept at 1223 K for 96 h, cooled to 823 K in 144 h, and then rapidly cooled to 295K. The reaction mixtures were washed with water and dried with acetone. Semiquantitative EDX analyses performed with a Hitachi 3500N SEM confirmed the presence of Ln, Yb, and S or Se in a 1:1:3 ratio, in agreement with the final formulation based on the X-ray structure determination. β -LaYbS₃ was obtained as yellow needles in less than 10% yield, whereas the LnYbSe₃ compounds were obtained as black needles in approximately 50% yield.

2.2. Crystallography

Single-crystal X-ray diffraction data were collected with the use of graphite-monochromatized $MoK\alpha$ radiation ($\lambda = 0.71073$ Å) at 153 K on a Bruker Smart-1000 CCD diffractometer [20]. The crystal-to-detector distance was 5.023 cm. Crystal decay was monitored by recollecting 50 initial frames at the end of data collection. Data were collected by a scan of 0.3° in ω in groups of 606, 606, 606, and 606 frames at φ settings of 0° , 90° , 180° , and 270° . The exposure times varied from 10 to 20 s/frame. The collection of the intensity data was carried out with the program SMART [20]. Cell refinement and data reduction were carried out with the use of the program SAINT [20] and face-indexed absorption corrections were performed numerically with the use of the program XPREP [21]. Then the program

Table 1					
Crystal d	lata and	structure	refinements	for	LnYbQ3

SADABS [20] was employed to make incident beam and decay corrections.

The structures were solved with the direct methods program SHELXS and refined with the full-matrix leastsquares program SHELXL of the SHELXTL suite of programs [21]. Each final refinement included anisotropic displacement parameters and a secondary extinction correction. Additional experimental details are given in Table 1. The program STRUCTURE TIDY [22] was used to standardize the positional parameters. The structure of β -LaYbS₃ [19] was determined earlier in space group $B22_12$ (standard setting $C222_1$) of the orthorhombic system, although the resultant structure differs minimally from one in Bbmm (standard setting *Cmcm*). In space group *Cmcm* there is the systematic absence h 0 l, l = 2n; all other systematic absences are the same in space groups Cmcm and $C222_1$. The present data for β -LaYbS₃ conform strictly to the condition h 0 l, l = 2n; the structure has been satisfactorily refined in space group *Cmcm*. Fractional coordinates for the six structures determined are listed in Table 2. Selected interatomic distances are given in Table 3.

2.3. Magnetic properties

Magnetic susceptibility measurements on CeYbSe₃ (21.5 mg) and SmYbSe₃ (31.1 mg) were carried out with the use of a Quantum Design SQUID magnetometer (MPMS5 Quantum Design). The composition of each sample was verified by EDX measurements. The samples were loaded into gelatin capsules. Zero-field cooled (ZFC) susceptibility data were collected in the range 5–300 K. The applied field was 500 G for CeYbSe₃ and 200 G for SmYbSe₃. All measurements were corrected for core diamagnetism [23]. The susceptibility data in the temperature range 200-300 K were fit by a

	Compound					
	β -LaYbS ₃	LaYbSe ₃	CeYbSe ₃	PrYbSe ₃	NdYbSe ₃	SmYbSe ₃
Formula weight	408.13	548.83	550.04	550.83	554.16	560.27
a (Å)	3.9238(8)	4.0616(8)	4.0234(5)	4.0152(5)	4.0015(6)	3.9780(9)
b (Å)	12.632(3)	13.094(3)	13.065(2)	13.053(2)	13.047(2)	13.040(3)
c (Å)	9.514(2)	9.932(2)	9.885(1)	9.868(1)	9.859(1)	9.860(2)
$V(Å^3)$	471.6(2)	528.2(2)	519.6(1)	517.2(1)	514.7(1)	511.4(2)
$\rho_{\rm c} ({\rm g/cm}^3)$	5.748	6.901	7.031	7.075	7.151	7.276
$\mu (\mathrm{cm}^{-1})$	297.68	460.65	473.68	482.09	490.59	507.04
Transm factors	0.23-0.57	0.020-0.16	0.048-0.42	0.074-0.67	0.041-0.36	0.010-0.63
R_1^{b}	0.0216	0.0245	0.0177	0.0220	0.0191	0.0235
wR_2^{c}	0.0551	0.0562	0.0526	0.0631	0.0526	0.0577

^a For all structures Z = 4, space group = Cmcm, T = 153(2) K, and $\lambda = 0.71073$ Å.

 ${}^{b}R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}| \text{ for } F_{o}^{2} > 2\sigma(F_{o}^{2}).$ ${}^{c}R_{w}(F^{2}) = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum wF_{o}^{4}\}^{1/2} \text{ for all data. } w^{-1} = \sigma^{2}(F_{o}^{2}) + (q \times F_{o}^{2})^{2} \text{ for } F_{o}^{2} \ge 0 \text{ and } w^{-1} = \sigma^{2}(F_{o}^{2}) \text{ for } F_{o}^{2} < 0. \ q = 0.03 \text{ for both La compounds;}$ q = 0.04 for the others.

least-squares method to the Curie–Weiss equation $\chi = C/(T-\theta_p)$, where *C* is the Curie constant and θ_p is the Weiss constant. The effective magnetic moment (μ_{eff}) was calculated from the equation $\mu_{eff} = (7.997C)^{1/2}$ $\mu_{\rm B}$ [24].

Table 2

Atomic coordinates^a and equivalent isotropic displacement parameters for $LnYbQ_3$

Atom	У	Ζ	$U_{\rm eq}^{\ \ b}$ (Å ²)
β-LaYbS ₃			
La	0.74651(6)	1/4	0.0049(3)
Yb	0	0	0.0053(3)
S(1)	0.3585(2)	0.0611(3)	0.0066(6)
S(2)	0.0835(3)	1/4	0.0074(9)
LaYbSe ₃			
La	0.74759(6)	1/4	0.0073(2)
Yb	0	0	0.0073(2)
Se(1)	0.35719(7)	0.0607(1)	0.0074(3)
Se(2)	0.0831(1)	1/4	0.0080(3)
CeYbSe ₃			
Ce	0.74821(3)	1/4	0.0060(2)
Yb	0	0	0.0064(2)
Se(1)	0.35619(4)	0.06245(5)	0.0070(2)
Se(2)	0.08601(6)	1/4	0.0084(2)
PrYbSe ₃			
Pr	0.74829(4)	1/4	0.0072(2)
Yb	0	0	0.0068(2)
Se(1)	0.35599(5)	0.06264(7)	0.0073(2)
Se(2)	0.08671(7)	1/4	0.0076(3)
NdYbSe ₃			
Nd	0.74853(3)	1/4	0.0074(2)
Yb	0	0	0.0071(2)
Se(1)	0.35551(4)	0.06340(5)	0.0074(2)
Se(2)	0.08800(5)	1/4	0.0081(2)
SmYbSe ₃			
Sm	0.74940(3)	1/4	0.0076(2)
Yb	0	0	0.0075(2)
Se(1)	0.35482(5)	0.06519(7)	0.0081(2)
Se(2)	0.09061(7)	1/4	0.0084(2)

 $a_x = 0$ for all atoms.

^b U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table 3			
Selected	distances	(Å) for	$LnYbQ_3$

3. Results and discussion

3.1. Structure

The $LnYbQ_3$ compounds β -LaYbS₃, LaYbSe₃, CeYbSe₃, PrYbSe₃, NdYbSe₃, and SmYbSe₃ are isostructural to UFeS₃ [25]. A view of the unit cell is depicted in Fig. 1. It consists of layers of YbQ₆ (Q=S or Se) octahedra that alternate with layers of LnQ_8 bicapped trigonal prisms along the *b*-axis. As shown in Fig. 2, the YbQ₆ octahedra share edges along the *a*-axis and corners along the *c*-axis to form an infinite buckled sheet. The LnQ_8 bicapped trigonal prisms share edges and caps to form a spacer layer that separates the sheets of YbQ₆ octahedra. The LnQ_8 and YbQ₆ layers are bound together via edge- and corner-sharing of the rareearth polyhedra to form the overall structure. This structure of the $LnYbQ_3$ materials is closely related to that of the GdFeO₃ structure-type adopted by $LnLn'O_3$

Fig. 1. Unit cell of $LnYbQ_3$ viewed down the *a*-axis.

	Compound	Compound						
	β-LaYbS ₃	LaYbSe ₃	CeYbSe ₃	PrYbSe ₃	NdYbSe ₃	SmYbSe ₃		
$Ln - Q(1) \times 4$	3.013(2)	3.1173(9)	3.0780(5)	3.0700(6)	3.0555(5)	3.0275(7)		
$Ln - \tilde{Q}(1) \times 2$	3.244(3)	3.377(1)	3.3763(7)	3.3720(8)	3.3749(7)	3.392(1)		
$Ln - Q(2) \times 2$	2.844(3)	2.960(1)	2.9218(7)	2.9117(8)	2.8965(6)	2.8712(9)		
$Yb = O(1) \times 4$	2.717(2)	2.8258(8)	2.8210(4)	2.8189(5)	2.8191(4)	2.8201(6)		
$Yb = \tilde{O}(2) \times 2$	2.602(2)	2.7109(7)	2.7147(4)	2.7142(5)	2.7190(4)	2.7334(7)		
$Ln\cdots Yb$	3.9889(9)	4.1338(9)	4.1143(5)	4.1086(5)	4.1036(5)	4.0931(8)		

Fig. 2. Yb Q_6 layer viewed down the *b*-axis.

Fig. 3. Unit cell of the GdFeO₃-type $LnLn'O_3$ compounds viewed down the *a*-axis. The Ln-O bonds have been removed for clarity.

(Ln = La-Nd; Ln' = Ho-Lu, Y) and $LnScS_3$ (Ln = Ce, Y)(space group *Pnma*) [13]. The distorted perovskite phase, pictured in Fig. 3, is constructed from $Ln'O_6$ octahedra that share edges and corners along the *a* and *c*-axis to form a buckled sheet similar to that of the YbQ₆ octahedra in $LnYbQ_3$. However, the $Ln'O_6$ octahedra of the perovskite compounds participate in additional corner-sharing along the *b*-axis to form a three-dimensional tunnel structure. The *Ln* atoms reside within these tunnels and are coordinated to eight O atoms in a bicapped trigonal prismatic arrangement.

The structure of β -LaYbS₃ found here differs minimally from that reported earlier [19], although the

Fig. 4. Structure of α-LaYbS₃.

present results suggest that the earlier determinations of the structures of both β -LaYbS₃ and NdYbS₃ [18] were carried out in the wrong space group, as was the case for CeScS₃ [15,16]. In contrast, the structure of α -LaYbS₃ [19], Fig. 4, is significantly different from that of the other materials. This complex three-dimensional structure is composed of distorted LaS₆ trigonal prisms and YbS₆ octahedra and bears little resemblance to the layered structures described here.

In the $LnYbQ_3$ materials all of the bond lengths are normal (Table 3). The following comparisons can be made: La–S, 2.844(3)–3.244(3) vs. 2.89(1)–3.14(2) Å in La₂Fe₂S₅ [26]; La–Se, 2.960(1)–3.377(1) vs. 2.975(3)– 3.222(5) Å in La₃AgSiSe₇ [27]; Ce–Se, 2.9218(7)– 3.3763(7) vs. 3.0027(9)–3.0253(9) Å in KCe₂CuSe₆ [28]; Pr–Se, 2.9117(8)–3.3720(8) vs. 2.970(2)–3.281(2) Å in Pr₃InSe₆ [29]; Nd–Se, 2.8965(6)–3.3749(7) vs. 2.970(1)–3.152(2) Å in NdSe_{1.9} [30]; Sm–Se, 2.8712(9)– 3.392(1) vs. 2.9285(8)–3.296(1) Å in Sm₃CrSe₆ [31]; Yb–S, 2.602(2)–2.717(2) vs. 2.677(2)–2.694(2) Å in CaYbInS₄ [32]; and Yb–Se, 2.7109(7)–2.8258(8) vs. 2.804(2)–2.818(2) Å in CaYbInSe₄ [32]. Because there are no Q-Q bonds in the structure of $LnYbQ_3$ the formal oxidation states of Ln/Yb/Q are 3+/3+/2-.

3.2. Magnetic properties

CeYbSe₃ and SmYbSe₃ are paramagnetic in the range 5–300 K (Fig. 5). Both compounds deviate from ideal Curie–Weiss behavior at low temperatures (<100 K) as a result of crystal-field effects [33]. The values of *C* (emu K mol⁻¹), θ_p (K), and μ_{eff} (μ_B) for the materials are: CeYbSe₃, 3.46(7), -44.6(9), 5.26(6); SmYbSe₃, 2.11(8), -107.6(4), 4.11(7). The large negative values of θ_p are indicative of a substantial degree of local antiferromagnetic coupling and it is possible that these materials order antiferromagnetically below 5 K, as do the *LnLn*'O₃ materials. The values of μ_{eff} agree well with

Fig. 5. Inverse magnetic susceptibility $(1/\chi)$ vs. *T* for CeYbSe₃ and SmYbSe₃.

the theoretical values of 5.20 and $4.78\mu_{\rm B}$, calculated for CeYbSe₃ and SmYbSe₃ from the magnetic moments for Ce³⁺, Sm³⁺, and Yb³⁺ of 2.54, 1.5, and 4.54 $\mu_{\rm B}$, respectively [34].

Acknowledgments

This research was supported by National Science Foundation Grant DMR00-96676 and a Ford Predoctoral Fellowship to K.M. Use was made of the Central Facilities supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

References

- J.M. Moreau, J. Mareschal, E.F. Bertaut, Solid State Commun. 6 (1968) 751–756.
- [2] H. Müller-Buschbaum, C. Teske, Inorg. Nucl. Chem. Lett. 4 (1968) 151–152.
- [3] J.M. Moreau, Mater. Res. Bull. 3 (1968) 427-432.
- [4] J. Mareschal, J.M. Moreau, G. Ollivier, P. Pataud, J. Sivardiere, Solid State Commun. 7 (1969) 1669–1672.
- [5] H. Müller-Buschbaum, C. Teske, Z. Anorg. Allg. Chem. 369 (1969) 255–264.

- [6] H. Müller-Buschbaum, P.-H. Graebner, Z. Anorg. Allg. Chem. 386 (1971) 158–162.
- [7] U. Berndt, D. Maier, C. Keller, J. Solid State Chem. 13 (1975) 131–135.
- [8] J. Coutures, J.P. Coutures, J. Solid State Chem. 19 (1976) 29-33.
- [9] U. Berndt, D. Maier, C. Keller, J. Solid State Chem. 16 (1976) 189–195.
- [10] M. Deepa, U.V. Varadaraju, Mater. Res. Soc. Symp. Proc. 527 (1998) 507–511.
- [11] M. Itoh, K. Tezuka, M. Wakeshima, Y. Hinatsu, J. Solid State Chem. 145 (1999) 104–109.
- [12] K. Ito, K. Tezuka, Y. Hinatsu, J. Solid State Chem. 157 (2001) 173–179.
- M. Marezio, J.P. Remeika, P.D. Dernier, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 26 (1970) 2008–2022.
- [14] N. Rodier, P. Laruelle, C. R. Seances Acad. Sci. Ser. C 270 (1970) 2127–2130.
- [15] D.J.W. Ijdo, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 36 (1980) 2403–2404.
- [16] K.-J. Range, A. Gietl, U. Klement, Z. Kristallogr. 207 (1993) 147–148.
- [17] N. Rodier, Bull. Soc. Fr. Mineral. Cristallogr. 96 (1973) 350-355.
- [18] D. Carré, P. Laruelle, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 30 (1974) 952–954.
- [19] N. Rodier, R. Julien, V. Tien, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 39 (1983) 670–673.
- [20] Bruker, SMART Version 5.054 Data Collection and SAINT-Plus Version 6.22 Data Processing Software for the SMART System, 2000 (Bruker Analytical X-ray Instruments, Inc., Madison, WI, USA).
- [21] G.M. Sheldrick, SHELXTL DOS/Windows/NT Version 6.12, 2000 (Bruker Analytical X-ray Instruments, Inc., Madison, WI, USA).
- [22] L.M. Gelato, E. Parthé, J. Appl. Crystallogr. 20 (1987) 139-143.
- [23] L.N. Mulay, E.A. Boudreaux, Theory and Applications of Molecular Diamagnetism, Wiley-Interscience, New York, 1976.
- [24] C.J. O'Connor, Prog. Inorg. Chem. 29 (1982) 203-283.
- [25] H. Noël, J. Padiou, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 32 (1976) 1593–1595.
- [26] F. Besrest, G. Collin, J. Solid State Chem. 21 (1977) 161-170.
- [27] S.-H. Lin, J.-G. Mao, G.-C. Guo, J.-S. Huang, J. Alloys Compd. 252 (1997) L8–L11.
- [28] Y. Klawitter, C. Näther, I. Jess, W. Bensch, M.G. Kanatzidis, Solid State Sci. 1 (1999) 421–431.
- [29] L.E. Aleandri, J.A. Ibers, J. Solid State Chem. 79 (1989) 107-111.
- [30] W. Urland, P. Plambeck-Fischer, M. Grupe, Z. Naturforsch. B: Chem. Sci. 44 (1989) 261–264.
- [31] O. Tougait, J.A. Ibers, Inorg. Chem. 39 (2000) 1790-1794.
- [32] J.D. Carpenter, S.-J. Hwu, Chem. Mater. 4 (1992) 1368-1372.
- [33] C. Cascales, R. Sáez-Puche, P. Porcher, J. Solid State Chem. 114 (1995) 52–56.
- [34] C. Kittel, Introduction to Solid State Physics, 6th Edition, Wiley, New York, 1986.