

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 177 (2004) 709–713

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Syntheses, structure, and magnetic properties of several $LnYbQ_3$ chalcogenides, $Q = S$, Se

Kwasi Mitchell, Rebecca C. Somers, Fu Qiang Huang, and James A. Ibers

Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA Received 3 June 2003; received in revised form 14 August 2003; accepted 11 September 2003

Abstract

The six $LnYbO_3$ compounds β -LaYbS₃, LaYbSe₃, CeYbSe₃, PrYbSe₃, NdYbSe₃, and SmYbSe₃ have been synthesized from hightemperature solid-state reactions of the constituent elements at 1223 K. The compounds are isostructural to $UFeS₃$ and crystallize in the space group Cmcm of the orthorhombic system with four formula units in a cell. Cell constants (A) at 153 K are: β -LaYbS₃, 3.9238(8), 12.632(3), 9.514(2); LaYbSe₃, 4.0616(8), 13.094(3), 9.932(2); CeYbSe₃, 4.0234(5), 13.065(2), 9.885(1); PrYbSe₃, 4.0152(5), 13.053(2), 9.868(1); NdYbSe₃, 4.0015(6), 13.047(2), 9.859(1); SmYbSe₃, 3.9780(9), 13.040(3), 9.860(2). The structure is composed of layers of Yb Q_6 ($Q = S$ or Se) octahedra that alternate with layers of LnQ₈ bicapped trigonal prisms along the b-axis. Because there are no Q–Q bonds in the structure the formal oxidation states of $Ln/Yb/Q$ are $3+/3+/2-$. Magnetic susceptibility measurements indicate that CeYbSe₃ and SmYbSe₃ are Curie–Weiss paramagnets over the temperature range 5–300 K. \odot 2003 Elsevier Inc. All rights reserved.

Keywords: Synthesis; Crystal structure; Solid-state compound; Rare-earth element; Chalcogenide; Magnetic properties

1. Introduction

The $LnLn'O_3$ oxides, where $Ln = La-Nd$ and $Ln' = Ho-Lu$, Y, have been the focus of numerous investigations of their structures and properties [\[1–12\]](#page-4-0). Typically, these oxides adopt the orthorhombic $GdFeO₃$ structure type [\[13\],](#page-4-0) which is a distorted variant of the cubic $ABO₃$ perovskite structure. Compared with perovskite, in this variant the coordination number of the A site is reduced from 12 to 8 and the coordination of the B site is reduced from 8 to 6. Magnetic measurements indicate that $LaE₁O₃$ exhibits an antiferromagnetic transition at 2.4 K [\[1,12\]](#page-4-0), whereas the $LnYbO₃$ ($Ln = La-Pr$) compounds order antiferromagnetically with a weak ferromagnetism at 2.7 K [\[12\].](#page-4-0) The magnetic properties of these perovskites are independent of the A site ions (La–Pr) but are dependent on the B site ions (Er and Yb).

In contrast to the oxides, the $LnLn'S₃$ chalcogenides have received little attention and no corresponding selenides $LnLn'Se₃$ or tellurides $LnLn'Te₃$ have been reported. Single-crystal X-ray diffraction studies were

 $0022-4596$ /\$ - see front matter \odot 2003 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2003.08.024

conducted on $YScS_3$ [\[14\]](#page-4-0), $CeScS_3$ [\[15,16\],](#page-4-0) $CeTmS_3$ [\[17\]](#page-4-0), $NdYbS₃$ [\[18\]](#page-4-0), and $LaYbS₃$ [\[19\],](#page-4-0) but no physical properties were measured. $YScS₃$ and $CeScS₃$ are isostructural and as the $LnLn'O₃$ oxides adopt the GdFe $O₃$ structure type. $CeTmS₃$ crystallizes in a rather complex threedimensional structure. $LaYbS₃$ crystallizes in two different structure types: α -LaYbS₃ (*Pnma*), synthesized at 1520 K, adopts a three-dimensional structure; β -LaYbS₃ (B22₁2; standard setting C222₁), synthesized at 1270 K, adopts a layered structure.

This investigation details the syntheses, structure, and magnetic properties of several $LnYbSe₃$ compounds. It also provides a redetermination of the structure of β -LaYbS₃, which crystallizes in a different space group from that reported earlier.

2. Experimental

2.1. Syntheses

The following reagents were used as obtained: La (Cerac, 99.9%), Ce (Alfa Aesar, 99.9%), Pr (Strem, 99.9%), Nd (Cerac, 99.9%), Sm (Alfa Aesar, 99.9%), Yb (Strem, 99.9%), S (Alfa Aesar, 99.99%), Se (Cerac,

^{*}Corresponding author. Fax: $+1-847-491-2976$.

E-mail address: ibers@chem.northwestern.edu (J.A. Ibers).

99.99%), and KI (Aldrich, 99.99%). Reaction mixtures consisted of 0.5 mmol Ln , 0.5 mmol Yb, and 1.5 mmol S or Se and 300 mg of KI. The reactants were loaded into carbon-coated fused-silica tubes in an Ar filled glovebox. These tubes were sealed under a 10^{-4} Torr atmosphere and then placed in a computer-controlled furnace. The samples were heated to 1223 K in 24 h , kept at $1223 K$ for 96h, cooled to $823 K$ in 144h, and then rapidly cooled to 295 K. The reaction mixtures were washed with water and dried with acetone. Semiquantitative EDX analyses performed with a Hitachi 3500N SEM confirmed the presence of Ln, Yb, and S or Se in a 1:1:3 ratio, in agreement with the final formulation based on the X-ray structure determination. β -LaYbS₃ was obtained as yellow needles in less than 10% yield, whereas the $LnYbSe₃$ compounds were obtained as black needles in approximately 50% yield.

2.2. Crystallography

Single-crystal X-ray diffraction data were collected with the use of graphite-monochromatized $M \circ K \alpha$ radiation (λ =0.71073 Å) at 153 K on a Bruker Smart-1000 CCD diffractometer [\[20\]](#page-4-0). The crystal–to–detector distance was 5.023 cm. Crystal decay was monitored by recollecting 50 initial frames at the end of data collection. Data were collected by a scan of 0.3 \degree in ω in groups of 606, 606, 606, and 606 frames at φ settings of 0° , 90° , 180° , and 270° . The exposure times varied from 10 to 20 s/frame. The collection of the intensity data was carried out with the program SMART [\[20\]](#page-4-0). Cell refinement and data reduction were carried out with the use of the program SAINT [\[20\]](#page-4-0) and face-indexed absorption corrections were performed numerically with the use of the program XPREP [\[21\]](#page-4-0). Then the program

SADABS [\[20\]](#page-4-0) was employed to make incident beam and decay corrections.

The structures were solved with the direct methods program SHELXS and refined with the full-matrix leastsquares program SHELXL of the SHELXTL suite of programs [\[21\]](#page-4-0). Each final refinement included anisotropic displacement parameters and a secondary extinction correction. Additional experimental details are given in Table 1. The program STRUCTURE TIDY [\[22\]](#page-4-0) was used to standardize the positional parameters. The structure of β -LaYbS₃ [\[19\]](#page-4-0) was determined earlier in space group $B22_12$ (standard setting $C222_1$) of the orthorhombic system, although the resultant structure differs minimally from one in *Bbmm* (standard setting Cmcm). In space group Cmcm there is the systematic absence $h \, 0 \, l$, $l = 2n$; all other systematic absences are the same in space groups Cmcm and $C222₁$. The present data for β -LaYbS₃ conform strictly to the condition $h \, 0 \, l$, $l = 2n$; the structure has been satisfactorily refined in space group Cmcm. Fractional coordinates for the six structures determined are listed in [Table 2](#page-2-0). Selected interatomic distances are given in [Table 3](#page-2-0).

2.3. Magnetic properties

Magnetic susceptibility measurements on $CeYbSe₃$ (21.5 mg) and $SmYbSe₃$ (31.1 mg) were carried out with the use of a Quantum Design SQUID magnetometer (MPMS5 Quantum Design). The composition of each sample was verified by EDX measurements. The samples were loaded into gelatin capsules. Zero-field cooled (ZFC) susceptibility data were collected in the range 5–300 K. The applied field was 500 G for $CeYbSe₃$ and 200 G for SmYbSe₃. All measurements were corrected for core diamagnetism [\[23\].](#page-4-0) The susceptibility data in the temperature range $200-300$ K were fit by a

^aFor all structures Z=4, space group=Cmcm, T=153(2) K, and λ =0.71073 Å.

 $\mathcal{L}^{\text{B}}(F) = \sum_{k=1}^{\infty} ||F_{0}| - |F_{0}| / \sum_{k=1}^{\infty} |F_{0}| \text{ for } F_{0}^{2} > 2\sigma(F_{0}^{2}).$
 $\mathcal{L}^{\text{B}}(F) = \sum_{k=1}^{\infty} ||F_{0}| - |F_{0}| / \sum_{k=1}^{\infty} |F_{0}| \text{ for } F_{0}^{2} > 2\sigma(F_{0}^{2}).$
 $\mathcal{L}^{\text{B}}(F) = \sum_{k=1}^{\infty} \frac{1}{k!} \sum_{k=1}^{\infty} \frac$ $q=0.04$ for the others.

least-squares method to the Curie–Weiss equation χ = $C/(T-\theta_p)$, where C is the Curie constant and θ_p is the Weiss constant. The effective magnetic moment (μ_{eff}) was calculated from the equation $\mu_{\text{eff}} = (7.997C)^{1/2}$ $\mu_{\rm B}$ [\[24\]](#page-4-0).

Table 2

Atomic coordinates^a and equivalent isotropic displacement parameters for $LnYbQ_3$

Atom	\mathcal{Y}	\boldsymbol{Z}	$U_{\text{eq}}^{\text{b}}\,(\text{\AA}^2)$
β -LaYbS ₃			
La	0.74651(6)	1/4	0.0049(3)
Yb	θ	θ	0.0053(3)
S(1)	0.3585(2)	0.0611(3)	0.0066(6)
S(2)	0.0835(3)	1/4	0.0074(9)
LaYbSe3			
La	0.74759(6)	1/4	0.0073(2)
Yb	θ	θ	0.0073(2)
Se(1)	0.35719(7)	0.0607(1)	0.0074(3)
Se(2)	0.0831(1)	1/4	0.0080(3)
CeYbSe ₃			
Ce	0.74821(3)	1/4	0.0060(2)
Yb	θ	θ	0.0064(2)
Se(1)	0.35619(4)	0.06245(5)	0.0070(2)
Se(2)	0.08601(6)	1/4	0.0084(2)
PrYbSe3			
Pr	0.74829(4)	1/4	0.0072(2)
Yb	θ	θ	0.0068(2)
Se(1)	0.35599(5)	0.06264(7)	0.0073(2)
Se(2)	0.08671(7)	1/4	0.0076(3)
NdYbSe3			
Nd	0.74853(3)	1/4	0.0074(2)
Yb	θ	θ	0.0071(2)
Se(1)	0.35551(4)	0.06340(5)	0.0074(2)
Se(2)	0.08800(5)	1/4	0.0081(2)
SmYbSe3			
Sm	0.74940(3)	1/4	0.0076(2)
Yb	$\overline{0}$	θ	0.0075(2)
Se(1)	0.35482(5)	0.06519(7)	0.0081(2)
Se(2)	0.09061(7)	1/4	0.0084(2)

 $x=0$ for all atoms.

 $^{b}U_{eq}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

3.1. Structure

The $LnYbQ_3$ compounds β -LaYbS₃, LaYbSe₃, CeYbSe₃, PrYbSe₃, NdYbSe₃, and SmYbSe₃ are isostructural to UFe S_3 [\[25\].](#page-4-0) A view of the unit cell is depicted in Fig. 1. It consists of layers of YbQ_6 ($Q=S$ or Se) octahedra that alternate with layers of LnQ_8 bicapped trigonal prisms along the b-axis. As shown in [Fig. 2,](#page-3-0) the Yb Q_6 octahedra share edges along the *a*-axis and corners along the c-axis to form an infinite buckled sheet. The LnQ_8 bicapped trigonal prisms share edges and caps to form a spacer layer that separates the sheets of Yb Q_6 octahedra. The LnQ_8 and Yb Q_6 layers are bound together via edge- and corner-sharing of the rareearth polyhedra to form the overall structure. This structure of the $LnYbQ_3$ materials is closely related to that of the GdFeO₃ structure-type adopted by $LnLn'O₃$

Fig. 1. Unit cell of $LnYbQ_3$ viewed down the *a*-axis.

Fig. 2. Yb Q_6 layer viewed down the b-axis.

Fig. 3. Unit cell of the GdFeO₃-type LnLn'O₃ compounds viewed down the a -axis. The Ln -O bonds have been removed for clarity.

 $(Ln = La-Nd; Ln' = Ho-Lu, Y)$ and $LnScS₃ (Ln = Ce, Y)$ (space group Pnma) [\[13\]](#page-4-0). The distorted perovskite phase, pictured in Fig. 3, is constructed from $Ln'O_6$ octahedra that share edges and corners along the a and c-axis to form a buckled sheet similar to that of the Yb Q_6 octahedra in $LnYbQ_3$. However, the $Ln'O_6$ octahedra of the perovskite compounds participate in additional corner-sharing along the b-axis to form a three-dimensional tunnel structure. The Ln atoms reside within these tunnels and are coordinated to eight O atoms in a bicapped trigonal prismatic arrangement.

The structure of β -LaYbS₃ found here differs minimally from that reported earlier [\[19\]](#page-4-0), although the

Fig. 4. Structure of α -LaYbS₃.

present results suggest that the earlier determinations of the structures of both β -LaYbS₃ and NdYbS₃ [\[18\]](#page-4-0) were carried out in the wrong space group, as was the case for CeScS₃ [\[15,16\].](#page-4-0) In contrast, the structure of α -LaYbS₃ [\[19\]](#page-4-0), Fig. 4, is significantly different from that of the other materials. This complex three-dimensional structure is composed of distorted LaS_6 trigonal prisms and $YbS₆$ octahedra and bears little resemblance to the layered structures described here.

In the $LnYbQ_3$ materials all of the bond lengths are normal ([Table 3](#page-2-0)). The following comparisons can be made: La–S, 2.844(3)–3.244(3) vs. 2.89(1)–3.14(2) Å in La₂Fe₂S₅ [\[26\]](#page-4-0); La–Se, 2.960(1)–3.377(1) vs. 2.975(3)– 3.222(5) A in La₃AgSiSe₇ [\[27\];](#page-4-0) Ce–Se, 2.9218(7)– 3.3763(7) vs. 3.0027(9)–3.0253(9) \AA in KCe₂CuSe₆ [\[28\]](#page-4-0); Pr–Se, 2.9117(8)–3.3720(8) vs. 2.970(2)–3.281(2) A in Pr₃InSe₆ [\[29\];](#page-4-0) Nd–Se, 2.8965(6)–3.3749(7) vs. 2.970(1)–3.152(2) Å in NdSe_{1.9} [\[30\];](#page-4-0) Sm–Se, 2.8712(9)– 3.392(1) vs. 2.9285(8)–3.296(1) A in Sm₃CrSe₆ [\[31\]](#page-4-0); Yb–S, 2.602(2)–2.717(2) vs. 2.677(2)–2.694(2) \AA in $CaYblnS₄$ [\[32\]](#page-4-0); and Yb–Se, 2.7109(7)–2.8258(8) vs. 2.804(2)–2.818(2) A in CaYbInSe₄ [\[32\]](#page-4-0). Because there are no $Q-Q$ bonds in the structure of $LnYbQ_3$ the formal oxidation states of $Ln/Yb/Q$ are $3+/3+/2-$.

3.2. Magnetic properties

 $CeYbSe₃$ and $SmYbSe₃$ are paramagnetic in the range 5–300 K [\(Fig. 5\)](#page-4-0). Both compounds deviate from ideal Curie–Weiss behavior at low temperatures $(<100 \text{ K})$ as a result of crystal-field effects [\[33\].](#page-4-0) The values of C (emu K mol⁻¹), θ_p (K), and μ_{eff} (μ_B) for the materials are: CeYbSe₃, 3.46(7), $-44.6(9)$, 5.26(6); SmYbSe₃, 2.11(8), $-107.6(4)$, 4.11(7). The large negative values of θ_p are indicative of a substantial degree of local antiferromagnetic coupling and it is possible that these materials order antiferromagnetically below 5 K, as do the $LnLn'O₃$ materials. The values of μ_{eff} agree well with

Fig. 5. Inverse magnetic susceptibility $(1/\chi)$ vs. T for CeYbSe₃ and SmYbSe₃.

the theoretical values of 5.20 and 4.78 $\mu_{\rm B}$, calculated for $CeYbSe₃$ and $SmYbSe₃$ from the magnetic moments for Ce^{3+} , Sm^{3+} , and Yb^{3+} of 2.54, 1.5, and 4.54 μ_B , respectively [34].

Acknowledgments

This research was supported by National Science Foundation Grant DMR00-96676 and a Ford Predoctoral Fellowship to K.M. Use was made of the Central Facilities supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

References

- [1] J.M. Moreau, J. Mareschal, E.F. Bertaut, Solid State Commun. 6 (1968) 751–756.
- [2] H. Müller-Buschbaum, C. Teske, Inorg. Nucl. Chem. Lett. 4 (1968) 151–152.
- [3] J.M. Moreau, Mater. Res. Bull. 3 (1968) 427–432.
- [4] J. Mareschal, J.M. Moreau, G. Ollivier, P. Pataud, J. Sivardiere, Solid State Commun. 7 (1969) 1669–1672.
- [5] H. Müller-Buschbaum, C. Teske, Z. Anorg. Allg. Chem. 369 (1969) 255–264.
- [6] H. Müller-Buschbaum, P.-H. Graebner, Z. Anorg. Allg. Chem. 386 (1971) 158–162.
- [7] U. Berndt, D. Maier, C. Keller, J. Solid State Chem. 13 (1975) 131–135.
- [8] J. Coutures, J.P. Coutures, J. Solid State Chem. 19 (1976) 29–33.
- [9] U. Berndt, D. Maier, C. Keller, J. Solid State Chem. 16 (1976) 189–195.
- [10] M. Deepa, U.V. Varadaraju, Mater. Res. Soc. Symp. Proc. 527 (1998) 507–511.
- [11] M. Itoh, K. Tezuka, M. Wakeshima, Y. Hinatsu, J. Solid State Chem. 145 (1999) 104–109.
- [12] K. Ito, K. Tezuka, Y. Hinatsu, J. Solid State Chem. 157 (2001) 173–179.
- [13] M. Marezio, J.P. Remeika, P.D. Dernier, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 26 (1970) 2008–2022.
- [14] N. Rodier, P. Laruelle, C. R. Seances Acad. Sci. Ser. C 270 (1970) 2127–2130.
- [15] D.J.W. Ijdo, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 36 (1980) 2403–2404.
- [16] K.-J. Range, A. Gietl, U. Klement, Z. Kristallogr. 207 (1993) 147–148.
- [17] N. Rodier, Bull. Soc. Fr. Mineral. Cristallogr. 96 (1973) 350–355.
- [18] D. Carré, P. Laruelle, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 30 (1974) 952–954.
- [19] N. Rodier, R. Julien, V. Tien, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 39 (1983) 670–673.
- [20] Bruker, SMART Version 5.054 Data Collection and SAINT-Plus Version 6.22 Data Processing Software for the SMART System, 2000 (Bruker Analytical X-ray Instruments, Inc., Madison, WI, USA).
- [21] G.M. Sheldrick, SHELXTL DOS/Windows/NT Version 6.12, 2000 (Bruker Analytical X-ray Instruments, Inc., Madison, WI, USA).
- [22] L.M. Gelato, E. Parthé, J. Appl. Crystallogr. 20 (1987) 139-143.
- [23] L.N. Mulay, E.A. Boudreaux, Theory and Applications of Molecular Diamagnetism, Wiley-Interscience, New York, 1976.
- [24] C.J. O'Connor, Prog. Inorg. Chem. 29 (1982) 203–283.
- [25] H. Noël, J. Padiou, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 32 (1976) 1593–1595.
- [26] F. Besrest, G. Collin, J. Solid State Chem. 21 (1977) 161–170.
- [27] S.-H. Lin, J.-G. Mao, G.-C. Guo, J.-S. Huang, J. Alloys Compd. 252 (1997) L8–L11.
- [28] Y. Klawitter, C. Näther, I. Jess, W. Bensch, M.G. Kanatzidis, Solid State Sci. 1 (1999) 421–431.
- [29] L.E. Aleandri, J.A. Ibers, J. Solid State Chem. 79 (1989) 107–111.
- [30] W. Urland, P. Plambeck-Fischer, M. Grupe, Z. Naturforsch. B: Chem. Sci. 44 (1989) 261–264.
- [31] O. Tougait, J.A. Ibers, Inorg. Chem. 39 (2000) 1790–1794.
- [32] J.D. Carpenter, S.-J. Hwu, Chem. Mater. 4 (1992) 1368–1372.
- [33] C. Cascales, R. Sáez-Puche, P. Porcher, J. Solid State Chem. 114 (1995) 52–56.
- [34] C. Kittel, Introduction to Solid State Physics, 6th Edition, Wiley, New York, 1986.